It's no secret that Angelina Jolie is fond of tattoos; everyone is familiar with the tattoo she got in honor of her now ex-husband, Billy Bob Thornton, then later had covered up. And publicity shots of soccer great David Beckham frequently show his bare back, revealing the names of his sons tattooed in thick black ink.But did you know that these celebrities also have Latin tattoos as well? Angelina's is on her lower stomach (next to a thick black cross that covers up a small blue dragon she got while drunk in Amsterdam) and says, ' Quod me nutrit me destruit', meaning, 'What nourishes me also destroys me.' David Beckham's Latin phrase is on his left inner forearm, just below his wife Victoria's name which is misspelled in a Hindi script.
The phrase reads, ' Ut Amem Et Foveam' meaning 'so that I love and cherish.' Although it is now extinct, Latin was once the universal language spoken in Europe (at least as early as the 1st century BC), and it is a language that we can all relate to, as many modern-day words are derived from it.But today, you can still hear some Latin, even if you are not attending mass at the Vatican in Rome or in Florida with my grandmother (who still says her prayers in Latin, as she was taught to do in the 1930s), or chatting with doctors ( primum non nocere, which means 'first, do no harm') or lawyers ( habeas corpus, an order requiring that a person be brought before a judge). In fact, many people still use Latin today without realizing it. Bona fide is Latin for 'good faith,' ad hoc means 'for this purpose,' and quid pro quo means 'something for something,' which is used in modern-day banter to mean 'tit for tat.'
A compilation of clips from the film Legend featuring Tim Curry as The Lord of Darkness and Mia Sara as Princess Lily.
Luckily, unlike tattoos of Hebrew and Arabic words and phrases, Latin phrases are fairly easy to translate for the sake of tattooing. Wikipedia offers an extensive list of Latin phrases, many of which make for beautiful and inspirational designs.As with any tattoo that is done in a foreign language not your own, make sure you do your homework. We've all heard the stories of people who get tattoos in other languages that look good but mean absolutely nothing, or worse—mean something they did not intend or perhaps even the opposite of what they wanted it to say.Double-check your translation with several sources before you get it inked on your skin. Because the Latin language is extinct, you won't be able to find a native speaker. Instead, ensure your translation is correct by either using several online translators or confirming its accuracy with a Latin teacher or scholar. Again, don't get a tattoo that is misspelled or translates into something other than what you'd thought.
Before you get inked, make sure you have the words right! Check it again and again. Know that online translation devices are just robotic and often make mistakes (turn verbs into nouns, mix words around, confuse genders, and make other inhuman errors).You might consider and inviting Latin scholars to help you with the phrase.
If you post a comment below, you might get lucky, since Latin students and scholars sometimes chime in to help with translations there.You should also spend some time sleuthing out the proper pronunciation because, well, it's your tattoo. I am a latin scholar here to the rescue! It's late and I'm bored so I decided to use my expensive education to save people from making terrible tattoo mistakes.:) Here's what I've got so far:“Let your wings unfold” = “Fiat alis tuis explicare”“Life is too short to live with fear” = Vita nimis brevis est cum metu vivere.“To dare is to do” = Audere est facere. / Audere facere est.“The truth will set you free” = Veritas liberabit vos. (from John 8:32 - et cognoscetis veritatem et veritas liberabit vos.)“family and nation has got your back” = Familia et patria tua te sustentat. (literally: your family and country sustain/support you.
Delete the “tua” to get rid of “your” if you wish)Accept your fate or be destroyed by it = Accipe sors tua aut disperī (literally a command/curse: (you) accept your fate or (you) be destroyed!) The long mark over the i in disperī is necessary for its meaning.“God is alone” (as in God is unaccompanied) / “God alone” (as in “God alone is to be praised”) = “Deus solus (est).” (the “est” is optional. If you want to say that God has no friends it is “Deus incomitatus (est).”“There is more to life than just being alive” = “Non est vivere sed valere vita est” (Life is not about living so much as about living well. LOVE SPELLThis powerful White magic love spell is tailored to bring your lover back in your arms permanently and with no delay.
I use the best spell casting techniques to make your lover come home. This spell is customized to your situation and deals specifically with the barriers that have risen between you and your ex-partner. One by one, all obstacles will be removed until your lover realizes that leaving you was a mistake and desire nothing but coming back into your arms.you can also contact him in is emailaddress /dr.kokotemple@gmail.com. He told me to stay calm and let the spell do it’s work, which indeed it did. Not even 3-4 days later, Wells called me and asked me out for a drink.
He apologized to me and sincerely begged me for forgiveness and to give him another chance. I loved this man so much, I could not say no.
He now treats me like a princess better than before if I may add. Ogun made a believer out of me. I wrote to him and apologized for my rudeness and lack of trust and patience. He also explained to me that magic is not like a push-button kind of thing.
It sometimes takes longer than anticipated but it always works and he was right. You may also need help in your love life and i recommend him as he is a great spell caster. Contact him via: Templeofloveandmoney@gmail.com. For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: Show Details NecessaryHubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.LoginThis is necessary to sign in to the HubPages Service.Google RecaptchaThis is used to prevent bots and spam. AkismetThis is used to detect comment spam. HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site.
Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.Amazon Web ServicesThis is a cloud services platform that we used to host our service. CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. FeaturesGoogle Custom SearchThis is feature allows you to search the site. Google MapsSome articles have Google Maps embedded in them. Google ChartsThis is used to display charts and graphs on articles and the author center.
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. Google YouTubeSome articles have YouTube videos embedded in them.
VimeoSome articles have Vimeo videos embedded in them. PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature.
MavenThis supports the Maven widget and search functionality. MarketingGoogle AdSenseThis is an ad network. Google DoubleClickGoogle provides ad serving technology and runs an ad network. Index ExchangeThis is an ad network. SovrnThis is an ad network. Facebook AdsThis is an ad network. Amazon Unified Ad MarketplaceThis is an ad network.
AppNexusThis is an ad network. OpenxThis is an ad network. Rubicon ProjectThis is an ad network. TripleLiftThis is an ad network. Say MediaWe partner with Say Media to deliver ad campaigns on our sites.
Example of a tattoo removal laser External audio, Distillations Podcast Episode 220,Tattoo removal has been performed with various tools since the start of tattooing. While are generally considered permanent, it is now possible to remove them with treatments, fully or partially.The 'standard modality for tattoo removal' is the non-invasive removal of tattoo pigments using. Different types of Q-switched lasers are used to target different colors of tattoo ink depending on the specific light absorption spectra of the tattoo pigments.Typically, black and other darker-colored inks can be removed completely using Q-switched lasers while lighter colors such as yellows and greens are still very difficult to remove.
Success can depend on a wide variety of factors including skin color, ink color, and the depth at which the ink was applied.Q-switched lasers first became commercially available in the early 1990s. For a couple of decades before that, were used as medical lasers for tattoo removal.
Continuous-wave lasers used a high energy beam that ablated the target area and destroyed surrounding tissue structures as well as tattoo ink. Treatment tended to be painful and cause scarring.Before the development of tattoo removal methods, common techniques included, TCA (, an that removes the top layers of, reaching as deep as the layer in which the tattoo ink resides), salabrasion (scrubbing the skin with ), and which is sometimes still used along with skin grafts for larger tattoos. Many other methods for removing tattoos have been suggested historically including the injection or application of, and dung.Recent research is investigating the potential of multi-pass treatments and the use of picosecond laser technology, which seem promising.
Contents.Motives A poll conducted in January 2012 by reported that 1 in 7 (14%) of the 21% of American adults who have a tattoo getting one. The poll did not report the reasons for these regrets, but a poll that was done 4 years prior reported that the most common reasons were 'too young when I got the tattoo' (20%), 'it's permanent' and 'I'm marked for life' (19%), and 'I just don't like it' (18%). An earlier poll showed that 19% of Britons with tattoos suffered regret, as did 11% of Italians with tattoos.Surveys of tattoo removal patients were done in 1996 and 2006 and provided more insight. Of those polled, the patients who regretted their tattoos typically obtained their tattoos in their late teens or early twenties, and were evenly distributed by gender. Among those seeking removals, more than half reported that they 'suffered embarrassment'. Main article:Some wearers decide to cover an unwanted tattoo with a new tattoo.
This is commonly known as a cover-up. An artfully done cover-up may render the old tattoo completely invisible, though this will depend largely on the size, style, colors and techniques used on the old tattoo and the skill of the tattoo artist.Covering up a previous tattoo necessitates darker tones in the new tattoo to effectively hide the older, unwanted piece.Many tattoos are too dark to cover up and in those cases patients may receive laser tattoo removal to lighten the existing ink to make themselves better candidates for a cover up tattoo.Laser removal. Scarring from laser tattoo removalTattoo removal is most commonly performed using lasers that break down the ink particles in the tattoo into smaller particles. Dermal are part of the immune system, tasked with collecting and digesting cellular debris. In the case of tattoo pigments, macrophages collect ink pigments, but have difficulty breaking them down.
Instead, they store the ink pigments. If a macrophage is damaged, it releases its captive ink, which is taken up by other macrophages.
This can make it particularly difficult to remove tattoos. When treatments break down ink particles into smaller pieces, macrophages can more easily remove them.Tattoo pigments have specific light absorption spectra. A tattoo laser must be capable of emitting adequate within the given of the to provide an effective treatment. Certain tattoo pigments, such as yellows and fluorescent inks are more challenging to treat than darker blacks and blues, because they have absorption spectra that fall outside or on the edge of the emission spectra available in the tattoo removal laser. Recent pastel coloured inks contain high concentrations of which is highly reflective. Consequently, such inks are difficult to remove since they reflect a significant amount of the incident light energy out of the skin.The gold standard of tattoo removal is considered to be laser tattoo removal using multiple separate (depending on the specific wavelengths needed for the dyes involved) over a number of repeat visits. There are several types of Q-switched lasers, and each is effective at removing a different range of the.Lasers developed during or after 2006 provide multiple wavelengths and can successfully treat a much broader range of tattoo pigments than previous individual Q-switched lasers.Unfortunately the dye systems used to change the result in significant power reduction such that the use of multiple separate specific wavelength lasers remains the gold standard.
The energy density , expressed as joules/cm 2, is determined prior to each treatment as well as the spot size and repetition rate (hertz). To mitigate pain the preferred method is simply to cool the area before and during treatment with a medical-grade chiller/cooler and to use a. During the treatment process, the laser beam passes through the skin, targeting the ink resting in a liquid state within. While it is possible to see immediate results, in most cases the fading occurs gradually over the 7–8 week healing period between treatments.Q-switched lasers are reported by the to result in scarring only rarely.
Areas with thin skin will be more likely to scar than thicker-skinned areas.By 2023, the laser tattoo removal market is expected to grow 12.7% annually. Mechanism of laser action Experimental observations of the effects of short-pulsed lasers on tattoos were first reported in the late 1960s by and others.In 1979 an argon laser was used for tattoo removal in 28 patients, with limited success. In 1978 a carbon dioxide laser was also used, but because it targeted, a present in all cells, this type of laser generally caused scarring after treatments.In the early 1980s, a new clinical study began in 's Burns and Plastic Surgery Unit, in Glasgow, Scotland, into the effects of Q-switched ruby laser energy on blue/black tattoos. Further studies into other tattoo colors were then carried out with various degrees of success. Research at the University of Strathclyde, Glasgow also showed that there was no detectable mutagenicity in tissues following irradiation with the Q-switched ruby laser. This essentially shows that the treatment is safe, from a biological viewpoint, with no detectable risk of the development of cancerous cells.It was not until the late 1980s that Q-switched lasers became commercially practical with the first marketed laser coming from Derma-lase Limited, Glasgow.
One of the first American published articles describing laser tattoo removal was authored by a group at in 1990.Tattoos consist of thousands of particles of tattoo pigment suspended in the skin. While normal human growth and healing processes will remove small foreign particles from the skin, tattoo pigment particles are too big to be removed automatically. Laser treatment causes tattoo pigment particles to heat up and fragment into smaller pieces. These smaller pieces are then removed by normal body processes.
Frozen Free Fall Icy Shot Level Walkthrough & Gameplay Tricks. Frozen free fall icy shot youtube lyrics.
Q-switched lasers produce bursts of infrared light at specific frequencies that target a particular spectrum of color in the tattoo ink. The laser passes through the upper layers of the skin to target a specific pigment in the lower layers.Laser tattoo removal is a successful application of the theory of selective (SPTL). However, unlike treatments for blood vessels or hair the mechanism required to shatter tattoo particles uses the. In this situation the energy is absorbed by the ink particles in a very short time, typically nanoseconds. The surface temperature of the ink particles can rise to thousands of degrees but this energy profile rapidly collapses into a shock wave. This shock wave then propagates throughout the local tissue (the dermis) causing brittle structures to fragment.
Hence tissues are largely unaffected since they simply vibrate as the shock wave passes. For laser tattoo removal the selective destruction of tattoo pigments depends on four factors:. The color of the light must penetrate sufficiently deep into the skin to reach the tattoo pigment. Pigments deeper in the skin are harder to remove than those near the surface.
The color of the laser light must be more highly absorbed by the tattoo pigment than the surrounding skin. Different tattoo pigments therefore require different laser colors.
For example, red light is highly absorbed by green tattoo pigments, while yellow tends not to absorb light. The time duration (pulse duration) of the laser energy must be very short, so that the tattoo pigment is heated to fragmentation temperature before its heat can dissipate to the surrounding skin. Otherwise, heating of the surrounding tissue can cause burns or scars.
For laser tattoo removal, this duration should be on the order of nanoseconds. Sufficient energy must be delivered during each laser pulse to heat the pigment to fragmentation. If the energy is too low, pigment will not fragment and no removal will take place.Q-switched lasers are the only commercially available devices that can meet these requirements.Although they occur infrequently, mucosal tattoos can be successfully treated with Q-switched lasers as well.A novel method for laser tattoo removal using a fractionated CO2 or Erbium:YAG laser, alone or in combination with Q-switched lasers, was reported by Ibrahimi and coworkers from the Wellman Center of Photomedicine at the Massachusetts General Hospital in 2011. This new approach to laser tattoo removal may afford the ability to remove colors such as yellow and white, which have proven to be resistant to traditional Q-switched laser therapy.Laser parameters that affect results Several colors of laser light (quantified by the laser wavelength) are used for tattoo removal, from visible light to near-infrared radiation.
Different lasers are better for different tattoo colors. Consequently, multi-color tattoo removal almost always requires the use of two or more laser wavelengths.
Tattoo removal lasers are usually identified by the lasing medium used to create the wavelength (measured in nanometers (nm)):. Q-switched Frequency-doubled Nd:YAG: 532 nm. This laser creates a green light which is highly absorbed by red, yellow, and orange targets. Useful primarily for red and orange tattoo pigments, this wavelength is also highly absorbed by melanin (the chemical which gives skin color or tan) which makes the laser wavelength effective for age spot or sun spot removal.
Nd:YAG lasers may cause hemoglobin absorption, leading to (collection of blood under tissue in large areas), or whitening of the skin. Q-switched Ruby: 694 nm. This laser creates a red light which is highly absorbed by green and dark tattoo pigments. Because it is more highly absorbed by melanin this laser may produce undesirable side effects such as pigmentary changes for patients of all but white skin. This is the best wavelength for blue ink. Q-switched Alexandrite: 755 nm.
But the moment he steps foot on the Fox lot, he's intercepted, knocked out, and locked in a supply shed by Bart.Cartman is taken to see Family Guy's writers, which turn out to be a group of manatees in a large tank. Stranger still, it's revealed that if even one idea ball is removed from the tank, they will refuse to work. Cartoon wars game. The placid aquatic mammals 'write' the show by selecting from a vast supply of 'idea balls,' each with a noun, verb, or pop-culture reference on it. A set of five is used to create each one of the show's set-piece gags.The animals ignore Cartman's touching story, mostly because they're the only mammals in the world that are immune to terrorist threats.
The weakest of all the q-switched devices and somewhat similar to the Ruby laser in that the Alexandrite creates a red light which is highly absorbed by green and dark tattoo pigments. However, the alexandrite laser color is slightly less absorbed by melanin, so this laser has a slightly lower incidence of unwanted pigmentary changes than a ruby laser. This laser works well on green tattoos but because of its weaker peak power it works only moderately well on black and blue ink. It does not work at all (or very minimally) on red, orange, yellow, brown, etc. This laser wavelength is also available in a picosecond speed with anecdotal claims that it removes ink faster. Q-switched Nd:YAG: 1064 nm.
This laser creates a near-infrared light (invisible to humans) which is poorly absorbed by, making this the only laser suitable for darker skin. This laser wavelength is also absorbed by all dark tattoo pigments and is the safest wavelength to use on the tissue due to the low melanin absorption and low absorption. This is the wavelength of choice for tattoo removal in darker skin types and for black ink. Dye modules are available for some lasers to convert 532 nm to 650 nm or 585 nm light which allows one laser system to safely and effectively treat multi-color tattoo inks. When dye modules take 532 nm laser wavelength and change it, there is a loss of energy. Treatments with dye packs, while effective for the first few treatments, many not be able to clear these ink colors fully.
The role of in tattoo removal is discussed in detail in the literature.Pulsewidth or pulse duration is a critical laser parameter. All Q-switched lasers have appropriate pulse durations for tattoo removal.Spot size, or the width of the laser beam, affects treatment. Light is optically scattered in the skin, like automobile headlights in fog. Larger spot sizes slightly increase the effective penetration depth of the laser light, thus enabling more effective targeting of deeper tattoo pigments.
Larger spot sizes also help make treatments faster.Fluence or energy density is another important consideration. Fluence is measured in joules per square centimeter (J/cm²). It is important to be treated at high enough settings to fragment tattoo particles.Repetition rate helps make treatments faster but is not associated with any treatment effect.
Faster treatments are usually preferred because the pain ends sooner.Number of laser tattoo removal treatment sessions needed Complete laser tattoo removal requires numerous treatment sessions, typically spaced at least seven weeks apart. Treating more frequently than seven weeks increases the risk of adverse effects and does not necessarily increase the rate of ink absorption.
Anecdotal reports of treatments sessions at four weeks leads to more scarring and dischromia and can be a source of liability for clinicians. At each session, some but not all of the tattoo pigment particles are effectively fragmented, and the body removes the smallest fragments over the course of several weeks or months.
The result is that the tattoo is lightened over time. Remaining large particles of tattoo pigment are then targeted at subsequent treatment sessions, causing further lightening.
The number of sessions and spacing between treatments depends on various parameters, including the area of the body treated, skin color and effectiveness of the immune system. Tattoos located on the extremities, such as the ankle, generally take longest. As tattoos fade clinicians may recommend that patients wait many months between treatments to facilitate ink resolution and minimize unwanted side effects.The amount of time required for the removal of a tattoo and the success of the removal varies with each individual and their immune system function. Factors influencing this include: skin type, location, color, amount of ink, scarring or tissue change, layers of ink, immune system function and circulation. Factors under the individual's control are more time between treatments, nutrition, stress, sleep, exercise and fluid levels. In the past health care providers would simply guess on the number of treatments a patient needed which was rather frustrating to patients.
A predictive scale, the 'Kirby-Desai Scale', was developed by Dr. Alpesh Desai, dermatologists with specialization in tattoo removal techniques, to assess the potential success and number of treatments necessary for laser tattoo removal, provided the medical practitioner is using a Q-switched Nd:YAG (neodymium-doped yttrium aluminium garnet) laser incorporating selective photothermolysis with six weeks between treatments.The Kirby-Desai Scale assigns numerical values to six parameters: skin type, location, color, amount of ink, scarring or tissue change, and layering. Parameter scores are then added to yield a combined score that will show the estimated number of treatments needed for successful tattoo removal.
Experts recommend that the Kirby-Desai scale be used by all laser practitioners prior to starting tattoo removal treatment to help determine the number of treatments required for tattoo removal and as a predictor of the success of the laser tattoo removal treatments. Prior to 2009, clinicians had no scientific basis by which to estimate the number of treatments needed to remove a tattoo and the use of this scale is now standard practice in laser tattoo removal.Certain colors have proved more difficult to remove than others. In particular, this occurs when treated with the wrong wavelength of laser light is used. Some have postulated that the reason for slow resolution of green ink in particular is due to its significantly smaller molecular size relative to the other colours.
Consequently, green ink tattoos may require treatment with 755 nm light but may also respond to 694 nm, 650 nm and 1064 nm. Multiple wavelengths of light may be needed to remove colored inks.One small Greek study showed that the R20 method—four passes with the laser, twenty minutes apart—caused more breaking up of the ink than the conventional method without more scarring or adverse effects. However, this study was performed on a very small patient population (12 patients total), using the weakest of the QS lasers, the 755 nm Alexandrite laser. One of the other main problems with this study was the fact that more than half of the 18 tattoos removed were not professional and amateur tattoos are always easier to remove.
Proof of concept studies are underway, but many laser experts advise against the R20 method using the more modern and powerful tattoo removal lasers available at most offices as an increase in adverse side effects including scarring and dischromia is likely. Patients should inquire about the laser being used if the R20 treatment method is offered by a facility as it is usually only offered by clinics that are using the weak 755 nm Alexandrite as opposed to the more powerful and versatile devices that are more commonly used. Moreover, dermatologists offering the R20 method should inform patients that it just one alternative to proven protocols and is not a gold standard treatment method to remove tattoos.Multiple pass treatment methods (R20, as mentioned above, and R0) have generally shown to carry a greater risk of side effects, due to the increased amount of energy used in treatment. One caveat to this, however, is incorporating a perfluorodecalin (PFD) patch into the protocol. A PFD patch utilizes a clear silicone gel patch, with a small amount of PFD liquid applied to the treatment area immediately before each pass of laser application, and conducting the passes in rapid succession. The combination of the patch and liquid reduce the epidermal scatter, which can limit the predicted side effects typically seen in aggressive laser tattoo removal treatments (hyper and hypopigmentation, blistering, etc).
Additionally, the liquid reduces the laser frosting very quickly, allowing for faster re-treatment, limiting the time of treatment while still improving efficacy. Early studies have been performed to indicate improved clearance with the use of this patch in 3-4 passes, in a single session, utilizing more energy than typically allowable with a traditional treatment methodology. All these physical properties of the patch work to substantially reduce the total number of laser treatment required for ink clearance. While the PFD patch is currently FDA cleared for use with all pico and nanosecond domain lasers and wavelengths, it is only cleared for Fitzpatrick Skin Types I-III. Early studies have shown anecdotally that there isn't necessarily increased risks with Fitzpatrick Skin Types IV-VI, though still not FDA cleared as an indication. Factors contributing to the success of laser tattoo removal There are a number of factors that determine how many treatments will be needed and the level of success one might experience. Age of tattoo, ink density, color and even where the tattoo is located on the body, all play an important role in how many treatments will be needed for complete removal.
However, a rarely recognized factor of tattoo removal is the role of the client’s immune response. The normal process of tattoo removal is fragmentation followed by which is then drained away via the. Consequently, it is the inflammation resulting from the actual laser treatment and the natural stimulation of the hosts’ immune response that ultimately results in removal of tattoo ink; thus variations in results are enormous. Pain management during treatment Laser tattoo removal is uncomfortable - many patients say it is worse than getting the tattoo.
The pain is often described to be similar to that of hot oil on the skin, or a 'snap' from an elastic band. Depending on the patient's, and while some patients may forgo anesthesia altogether, most patients will require some form of local anesthesia. Pre-treatment might include the application of an anesthetic cream under occlusion for 45 to 90 minutes or cooling by ice or cold air prior to the laser treatment session. A better method is complete anesthesia which can be administered locally by injections of 1% to 2% lidocaine with epinephrine.A technique which helps to reduce the pain sensation felt by patients has been described by MJ Murphy He used a standard microscope glass slide pressed against the tattooed skin and fired the laser through the glass. This technique may represent a simplest and effective method to reduce the pain sensation when treating small tattoos.Post-treatment considerations Immediately after laser treatment, a slightly elevated, white discoloration with or without the presence of punctuate bleeding is often observed. This white color change is thought to be the result of rapid, heat-formed steam or gas, causing dermal and epidermal vacuolization. Pinpoint bleeding represents vascular injury from photoacoustic waves created by the laser's interaction with tattoo pigment.
Minimal edema and of adjacent normal skin usually resolve within 24 hours. Subsequently, a crust appears over the entire tattoo, which sloughs off at approximately two weeks post-treatment. As noted above, some tattoo pigment may be found within this crust. Post-operative wound care consists of simple wound care and a non-occlusive dressing. Since the application of laser light is sterile there is no need for topical antibiotics. Moreover, topical antibiotic ointments can cause allergic reactions and should be avoided. Fading of the tattoo will be noted over the next eight weeks and re-treatment energy levels can be tailored depending on the clinical response observed.
Side effects and complications About half of the patients treated with Q-switched lasers for tattoo removal will show some transient changes in the normal skin pigmentation. These changes usually resolve in 6 to 12 months but may rarely be permanent.Hyperpigmentation is related to the patient's, with skin types IV, V and VI more prone regardless of the wavelength used. Twice daily treatment with hydroquinones and broad-spectrum sunscreens usually resolves the hyperpigmentation within a few months, although, in some patients, resolution can be prolonged.Hypopigmentation is more commonly observed in darker skin tones. It is more likely to occur with higher fluence and more frequent treatments. Sometimes lighter skin exhibits hypopigmentation after a series of treatments.
Allowing more time between treatments reduces chances of hypopigmentation. Since it is more likely to see hypopigmentation after multiple treatments, some practitioners suggest waiting a few additional weeks, after a few sessions. Usually treatment stops until hypopigmentation resolves in a matter of months.Transient textural changes are occasionally noted but often resolve within a few months; however, permanent textural changes and scarring very rarely occur. If a patient is prone to pigmentary or textural changes, longer treatment intervals are recommended.
Additionally, if a blister or crust forms following treatment, it is imperative that the patient does not manipulate this secondary skin change. Early removal of a blister of crust increases the chances of developing a scar. Additionally, patients with a history of hypertrophic or keloidal scarring need to be warned of their increased risk of scarring.Local allergic responses to many tattoo pigments have been reported, and allergic reactions to tattoo pigment after Q-switched laser treatment are also possible. Rarely, when yellow cadmium sulfide is used to 'brighten' the red or yellow portion of a tattoo, a photoallergic reaction may occur. The reaction is also common with red ink, which may contain cinnabar (mercuric sulphide). Erythema, pruritus, and even inflamed nodules, verrucose papules, or granulomas may present. The reaction will be confined to the site of the red/yellow ink.
Treatment consists of strict sunlight avoidance, sunscreen, interlesional steroid injections, or in some cases, surgical removal. Unlike the destructive modalities described, Q-switched lasers mobilize the ink and may generate a systemic allergic response. Oral antihistamines and anti-inflammatory steroids have been used to treat allergic reactions to tattoo ink.Studies of various tattoo pigments have shown that a number of pigments (most containing iron oxide or titanium dioxide) change color when irradiated with Q-switched laser energy. Some tattoo colors including flesh tones, light red, white, peach and light brown containing pigments as well as some green and blue tattoo pigments, changed to black when irradiated with Q-switched laser pulses.
The resulting gray-black color may require more treatments to remove. If tattoo darkening does occur, after 8 weeks the newly darkened tattoo can be treated as if it were black pigment.Very rarely, non Q-switched laser treatments, like CO2 or Argon lasers, which are very rarely offered these days, can rupture blood vessels and aerosolize tissue requiring a plastic shield or a cone device to protect the laser operator from tissue and blood contact.
Protective eyewear may be worn if the laser operator chooses to do so.With the mechanical or salabrasion method of tattoo removal, the incidence of scarring, pigmentary alteration (hyper- and hypopigmentation), and ink retention are extremely high.The use of Q-switched lasers could very rarely produce the development of large. However, if patients follow post care directions to elevate, rest, and apply intermittent icing, it should minimize the chances of bulla and other adverse effects. In addition, health care practitioners should contemplate the use of a cooling device during the tattoo removal procedure.
While the infrequent bulla development is a possible side effect of Q-switched laser tattoo removal, if treated appropriately and quickly by the health care practitioner, it is unlikely that long term consequences would ensue. Risks Although laser treatment is well known and often used to remove tattoos, unwanted side effects of laser tattoo removal include the possibility of discoloration of the skin such as hypopigmentation (white spots, more common in darker skin) and hyperpigmentation (dark spots) as well as textural changes - these changes are usually not permanent when the Nd:YAG is used but it is much more likely with the use of the 755 nm Alexandrite, the 694 nm Ruby and the R20 method. Very rarely, burns may result in scarring but this usually only occurs when patients do not care for the treated area properly. Occasionally, 'paradoxical darkening' of a tattoo may occur, when a treated tattoo becomes darker instead of lighter.
This occurs most often with white ink, flesh tones, pink, and cosmetic make-up tattoos.Some tattoo pigments contain metals that could theoretically break down into toxic chemicals in the body when exposed to light. This has not yet been reported in vivo but has been shown in laboratory tests. Laser removal of traumatic tattoos may similarly be complicated depending on the substance of the pigmenting material. In one reported instance, the use of a laser resulted in the ignition of embedded particles of firework debris.
References Notes. ^ Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha (2015). Journal of Cutaneous and Aesthetic Surgery. 8 (1): 16–24. ^ Klett, Joseph (2018).
4 (1): 12–23. Retrieved June 27, 2018. ^ Kent, Kathryn M.; Graber, Emmy M. (January 2012).
'Laser Tattoo Removal: A Review'. Dermatologic Surgery. 38 (1): 1–13. Cannarozzo, Giovanni; Duca, Ester Del; Cannizzaro, Maria Vittoria (2017).
Retrieved 28 June 2018. Mao, Johnny C.; DeJoseph, Louis M. Facial Plastic Surgery Clinics of North America.
Pp. 125–134. Arellano, CR; Leopold, DA; Shafiroff, BB (December 1982). 'Tattoo removal: comparative study of six methods in the pig'. Plastic and Reconstructive Surgery. 70 (6): 699–703. Goh, CheeLeok; Ho, StephanieGY (2015). Journal of Cutaneous and Aesthetic Surgery.
8 (1): 9–15. Kossida, Theodora; Rigopoulos, Dimitrios; Katsambas, Andreas; Anderson, R. Rox (February 2012).
'Optimal tattoo removal in a single laser session based on the method of repeated exposures'. Journal of the American Academy of Dermatology. 66 (2): 271–277. ^ Sadick, Neil S.; Krueger, Nils (2014).
Philadelphia: Elsevier saunders. Retrieved 28 June 2018. Retrieved 2016-08-19. Armstrong, ML; et al. 'Motivation for contemporary tattoo removal: a shift in identity'.
144 (7): 879–84. Pires, Candice (1 December 2017). The Guardian. Retrieved 28 June 2018. Bousquet, Kristen (2015-11-24). Retrieved 2016-08-19. Tierney, John (4 January 2013).
Retrieved 6 January 2013. DeMello, Margo (May 30, 2014). Santa Barbara, California: ABC-CLIO. Retrieved 28 June 2018. Kirby, W; Desai, A; Desai, T; Kartono, F; Geeta, P (March 2009). The Journal of Clinical and Aesthetic Dermatology.
2 (3): 32–7. Wilhelm, Menaka (March 8, 2018). Retrieved 28 June 2018.
Cuyper, Christa De; Cotapos, Maria Luisa (2009). Berlin: Springer.
Retrieved 28 June 2018. Kirby W, Holmes E, Desai A, Desai T. Best Clinical Practices in Laser Tattoo Removal: Tips for improving patient outcomes and managing patient expectations. The Dermatologist, June 2012: 23-28. Kuperman-Beade, M; Levine, VJ; Ashinoff, R (2001).
'Laser removal of tattoos'. American Journal of Clinical Dermatology. 2 (1): 21–5. Business Insider. Retrieved 23 July 2018. ^ Lanigan, Sean W. London: Springer.
Retrieved 27 June 2018. Goldman L. Effect of the laser beam on skin. J Invest Dermatol. 121–122. Goldman, Leon (11 September 1967). 'Laser Treatment of Tattoos.
A Preliminary Survey of Three Year's Clinical Experience'. 201 (11): 841–4.
Kirby, William, Desai, Alpesh, Desai, Tejas, Kartona, Francisa, Tattoo Removal Techniques: Effective Tattoo Removal Treatments - Part 1, Skin and Aging, September 2005. Omi, Tokuya; Numano, Kayoko (2014). Laser Therapy. 23 (1): 49–60. Reid W.H., McLeod P.J., Ritchie A., Ferguson-Pell M. Q-switched ruby laser treatment of black tattoos.
British Journal of Plastic Surgery, 1983, 36, 455-459. Reid, W.H.; Miller, I.D.; Murphy, M.J.; Paul, J.P.; Evans, J.H. 'Q-switched Ruby Laser Removal of Tattoo: A 9-Year Review'. British Journal of Plastic Surgery. 1990 (43): 663–669. Newstead J. Assessment of laser/skin interactions by histologic and cytogenetic techniques.
Thesis, University of Strathclyde, Glasgow. 1988. Sarnoff, Deborah S. Retrieved 27 June 2018. Murphy, Michael (July 17, 2016). Mike Murphy's Blog. Retrieved 27 June 2018.
Photonics Spectra. Optical Publishing Company. Retrieved 27 June 2018. Taylor, C.R.; et al.
'Treatment of tattoos by Q-switched ruby laser. A dose-response study'. 126 (7): 893–9. Kilmer SL, Garden JM. Laser treatment of pigmented lesions and tattoos. Semin Cutan Med Surg. 2000 Dec;19(4):239.
Anderson, RR; Parrish, JA (Apr 1983). 'Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation'. 220 (4596): 524–7. Kilmer SL. Laser treatment of tattoos. Dermatol Clin. 1997 Jul;15(3):409–17.
Kirby W, Chen C, Desai A, Desai T. Successful Treatment of Cosmetic Mucosal Tattoos Via Q-Switched Laser. Dermatologic Surgery, December 2011. Ibrahimi OA; Syed Z; Sakamoto FH; Avram MM; Anderson RR. (June 2011).
64 (6): 1111–1114. Beyer, Victor. Rethink the Ink. Retrieved 21 December 2016.
Kilmer, SL; Anderson, RR (Apr 1993). 'Clinical use of the Q-switched ruby and the Q-switched Nd:YAG (1064 nm and 532 nm) lasers for treatment of tattoos'. J Dermatol Surg Oncol. 19 (4): 330–8. Alster TS.
Q-switched alexandrite laser treatment (755 nm) of professional and amateur tattoos. J Am Acad Dermatol. 1995 Jul;33(1):69–73.
(ed.), Tunable Laser Applications (CRC, New York, 2009) Chapter 8. Jitchotvisut, Janaki. Retrieved 17 July 2019. ^ Kirby, William; Desai, Alpesh; Desai, Tejas; Kartono, Francisca; Geeta, Patel (21 December 2016). The Journal of Clinical and Aesthetic Dermatology.
2 (3): 32–37. Kirby, William (2009).
The Journal of Clinical and Aesthetic Dermatology. 2 (3): 32–37. Konstadinos Siomos; Raymond T.
Bailey; Frank R. Cruickshank; Michael J. Murphy; Q-switched laser removal of tattoos: a clinical and spectroscopic investigation of the mechanism. SPIE 2623, Medical Applications of Lasers III, 40 (Jan 1996);:. Biesman, Brian S.; O'Neil, Michael P.; Costner, Cara (2015). 'Rapid, high-fluence multi-pass q-switched laser treatment of tattoos with a transparent perfluorodecalin-infused patch: A pilot study'. Lasers in Surgery and Medicine.
47: 613–618. Reddy, Kavitha K.; Brauer, Jeremy A.; Anolik, Robert; Bernstein, Leonard; Brightman, Lori; Hale, Elizabeth; Karen, Julie; Weiss, Elliot; Geronemus, Roy G. 'Topical perfluorodecalin resolves immediate whitening reactions and allows rapid effective multiple pass treatment of tattoos'. Lasers in Surgery and Medicine. 45: 76–80.
Vangipuram, Ramya; Hamill, Selina S.; Friedman, Paul M. 'Perfluorodecalin-infused patch in picosecond and Q-switched laser-assisted tattoo removal: Safety in Fitzpatrick IV-VI skin types'. Lasers in Surgery and Medicine. 51: 23–26.
Costandi, Mo. Scientific American. Retrieved 24 February 2020.
Nelson, Dustin. Fallen Ink Tattoo Removal.
Retrieved 8 February 2017. Murphy, Michael J. 'A novel, simple and efficacious technique for tattoo removal resulting in less pain using the Q-switched Nd:YAG laser'. Lasers in Medical Science. 29 (4): 1445–1447. Kirby, William; Desai, Alpesh; Desai, Tejas; Kartona, Francisa.
Tattoo Removal Techniques: Effective Tattoo Removal Treatments - Part 2, Skin and Aging, October, 2005. ^ Kirby, William; Koriakos, Angie; Desai, Alpesh; Desai, Tejas (August 2010). Skin and Aging. Archived from (PDF) on 2010-09-28. Kirby, William; Kaur, Ravneet Ruby; Desai, Alpesh (June 2010). Journal of Cosmetic Dermatology.
Archived from (PDF) on September 28, 2010. Kirby, William, Desai, Alpesh, Desai, Tejas, Kartona, Francisa, Tattoo Removal Techniques: Effective Tattoo Removal Treatments - Part 1, Skin and Aging, September, 2005. Kirby W; Kartono F; Desai A; Kaur R; Desai T (January 2010). Journal of Clinical and Aesthetic Dermatology. S. Varma, et al.
Tattoo ink darkening of a yellow tattoo after Q-switched laser treatment. Clinical and Experimental Dermatology. 2002: Volume 27 Issue 6, pp. 461–463. Holzer A, et al. Adverse Effects of Q-Switched Laser Treatment of Tattoos. Dermatologic Surgery 2007: Volume 34 Issue 1, pp.
118–122. Taylor Charles R., 'Laser ignition of traumatically embedded firework debris,' Lasers in Surgery and Medicine, 1998, volume 22, p.